
MÉCANIQUE DES MILIEUX CONTINUS BS - SGC - EPFL
Séance d’exercice n°9 Lausanne

Problèmes de mécanique continue

Exercice 1 :

Imaginons qu’il soit possible - mis à part le problème d’instabilité - de construire une colonne de section
constante aussi haute qu’on le désire. Si cette colonne est en granit, déterminer sa hauteur maximale.
Pour le granit :
Masse volumique ρ = 2700 kg/m3

Résistance ou contrainte de rupture en compression σc=18 kN/cm2.

Correction Pour calculer la hauteur maximale de la colonne, il suffit de vérifier que la contrainte de
compression due au poids propre à la base de la colonne ne dépasse pas la limite en compression du granit.
Ainsi, on résout :

ρghmax = σc

A.N. :
hmax = 180.106

9.81 · 2700 = 6795.8 m

Exercice 2 :

Un câble en acier pour mine, long de 600 m, est formé de 3 tronçons ; chaque tronçon mesure 200 m et a
une section constante. Ce câble doit supporter en service un poids Q = 30 kN et l’acier a une contrainte
admissible de 18 kN/cm2, et une masse volumique de 7800 kg.m−3. Dimensionner ce câble (déterminer A1,
A2 et A3) ; trouver ensuite son allongement total.

Correction 1) Le câble considéré doit être capable de supporter la charge appliquée et le poids propre du
câble.
Il faut donc commencer le dimensionnement par le tronçon inférieur où la charge est appliquée et où le poids
propre est moindre.
On appelle L la longueur d’un tronçon.
Tronçon A1, inférieur :

σlim = ρgL + Q

A1

A.N.
A1 ≃ 1.8 cm2

Tronçon A2, milieu :

σlim = ρgL + Q + ρgLA1
A2

A.N.
A2 ≃ 2, 0 cm2

Tronçon A3, supérieur :

σlim = ρgL + Q + ρgL(A1 + A2)
A3

A.N.
A3 ≃ 2.2 cm2



2) Pour calculer l’allongement total, on peut par exemple calculer l’allongement de chaque tronçon.
Le tenseur des contraintes est donné par :

σ =

 σxx 0 0
0 0 0
0 0 0

 .

D’après la loi de Hooke, on a :
εxx = 1

E
[σxx − ν(σyy + σzz)] = σxx

E
.

On peut donc calculer l’allongement par tronçon.
Tronçon A1, inférieur :

uA1 =
∫ L

0
εA1(x) dl =

∫ L

0

σlim

E
dl =

∫ L

0

1
E

(
Q

A1
+
∫ l

0
ρgdl

)
dl = 1

E

∫ L

0

(
Q

A1
+ ρgl

)
dl = 1

E

(
QL

A1
+ ρgL2

2

)

A.N
uA1 ≃ 0.17 m

Tronçon A2, milieu :

uA2 =
∫ L

0
εA2dl =

∫ L

0

1
E

(
Q

A2
+ ρgL

A1
A2

+
∫ l

0
ρgdl

)
dl = 1

E

(
L

(
Q

A2
+ ρgL

A1
A2

)
+ ρgL2

2

)

A.N.
uA2 ≃ 0.17 m

Tronçon A3, supérieur :

uA3 =
∫ L

0
εA3dl =

∫ L

0

1
E

(
Q

A3
+ ρgL

A1 + A2
A2

+
∫ l

0
ρgdl

)
dl = 1

E

∫ L

0

(
Q

A3
+ ρgL

A1 + A2
A3

+ ρgl

)
dl

= 1
E

(
L

(
Q

A3
+ ρgL

A1 + A2
A3

)
+ ρgL2

2

)
A.N.

uA3 ≃ 0.17 m

Au total,
utot = uA1 + uA2 + uA3 ≃ 0.50 m

Pour comparaison, si on avait considéré la contrainte constante dans tout le câble, on aurait trouvé :

utot = 3L

E
σlim ≃ 0.525m

Exercice 3 :

Un prisme rectangulaire droit de longueur l, hauteur h et largeur w est composé d’un matériau linéaire
élastique, isotrope et homogène (voir figure 1).
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Figure 1 – Géométrie du prisme pour les cas a) et b)

a) Le prisme est soumis à une pression uniforme sur les faces d’abscisse x = 0 et x = l. Toutes les autres
faces sont libres.
1. Exprimer le tableau des conditions aux limites.
2. Exprimer les composantes du tenseur des contraintes et des déformations infinitésimales.
3. En déduire le module d’élasticité effectif qui est défini par :

Eeff = σxx

ϵxx
(1)

en fonction du module de Young E et du coefficient de Poisson ν.
b) Le prisme est soumis, comme pour le cas a), à une pression uniforme sur les faces d’abscisse x = 0

et x = l. De plus, le prisme est en contact sans frottement avec des murs rigides d’ordonnée y = 0 et
y = h. Les autres faces (z = 0 et z = w) sont libres.

1. Exprimer le tableau des conditions aux limites.
2. Exprimer les composantes du tenseur des contraintes et des déformations infinitésimales (Indica-

tion : les conditions aux limites imposent ici que ϵyy = 0 en tout point).
3. En déduire le module d’élasticité effectif qui est défini par :

Eeff = σxx

ϵxx
(2)

en fonction du module de Young E et du coefficient de Poisson ν.

c) Enfin, le prisme est soumis, comme pour le cas a), à une pression uniforme sur les faces d’abscisse
x = 0 et x = l. Cette fois, le prisme est en contact sans frottement avec des murs rigides dans les
deux autres directions (ordonnée y = 0, y = h, z = 0 et z = w).
1. Exprimer le tableau des conditions aux limites.
2. Exprimer les composantes du tenseur des contraintes et des déformations infinitésimales.
3. En déduire le module d’élasticité effectif qui est défini par :

Eeff = σxx

ϵxx

en fonction du module de Young E et du coefficient de Poisson ν.
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Solution

a) Le prisme est soumis à une pression uniforme sur les faces d’abscisse x = 0 et x = l.

1. Le tableau des conditions aux limites :
Limite ex ey ez

Sx=0 tx = p ty = 0 tz = 0
Sx=l tx = −p ty = 0 tz = 0
Slaty tx = 0 ty = 0 tz = 0
Slatz tx = 0 ty = 0 tz = 0

2. La seule composante non nulle du tenseur des contraintes est σxx.

→ σij = 0 pour tous i, j sauf i = j = x

On peut déterminer σxx par :

ex · σij = tx (sur Sx=l)
→ σxx = −p

Déterminer ϵxx, ϵyy et ϵzz par la loi de Hooke :

ϵxx = 1
E

[(1 + ν) σxx − νσxx] = σxx

E
= − p

E

ϵyy = ϵzz = − ν

E
σxx = νp

E
ϵxy = ϵxz = ϵyz = 0

3. Le module d’élasticité effectif est :
Eeff = σxx

ϵxx
= E

Cette configuration permet donc d’évaluer le module d’Young d’un matériau expérimentalement.

b) Le prisme est soumis à une pression uniforme sur les faces d’abscisse x = 0 et x = l, et le déplacement
dans la direction y aux faces d’ordonnée y = 0 et y = h est nulle.

1. Le tableau des conditions aux limites :
Limite ex ey ez

Sx=0 tx = p ty = 0 tz = 0
Sx=l tx = −p ty = 0 tz = 0
Slaty tx = 0 uy = 0 tz = 0
Slatz tx = 0 ty = 0 tz = 0

2. Les seuls composantes non nulles du tenseur des contraintes sont σxx et σyy. On peut déterminer
σxx par :

ex · σij = tx (sur Sx=l)
→ σxx = −p

Pour déterminer σyy, il faut utiliser :
uy = 0 (3)

Ceci implique que ϵyy = ∂uy

∂y
= 0. Par conséquent, nous utilisons la loi de Hooke pour déterminer

σyy :

ϵyy = 1
E

[(1 + ν) σyy − ν (σxx + σyy)] = 0

→ 1
E

[σyy − νσxx] = 0

→ σyy = νσxx
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En utilisant le résultat pour σxx nous trouvons :

→ σyy = −νp

Les autres composantes du tenseur des contraintes sont toutes nulles :

σzz = 0
σxy = σxz = σyz = 0

Nous pouvons calculer ϵxx et ϵzz analogue à la partie a).

ϵxx = 1
E

[(1 + ν) σxx − ν (σxx + σyy)]

= 1
E

[σxx − νσyy] = σxx

E

[
1 − ν2

]
= − p

E

(
1 − ν2

)

ϵzz = 1
E

[(1 + ν) σzz − ν (σxx + σyy)]

= − ν

E
(σxx + νσxx) = −ν (1 + ν)

E
σxx

= νp (1 + ν)
E

Les autres composantes du tenseur des déformations sont nulles :

ϵxy = ϵxz = ϵyz = 0

3. Le module d’élasticité effectif est :

Eeff = σxx

ϵxx
= E

1 − ν2

Cette seconde configuration permet donc d’évaluer le coefficient de Poisson d’un matériau (une
fois le module d’Young connu).

c) Le prisme est soumis à une pression uniforme sur les faces d’abscisse x = 0 et x = l. De plus le
déplacement dans la direction y pour les faces y = 0 et y = h est nul, ainsi que dans la direction z
pour les faces z = 0 et z = w.

1. Le tableau des conditions aux limites :

Limite ex ey ez

Sx=0 tx = p ty = 0 tz = 0
Sx=l tx = −p ty = 0 tz = 0
Slaty tx = 0 uy = 0 tz = 0
Slatz tx = 0 ty = 0 uz = 0

2. Les seules composantes non nulles du tenseur des contraintes sont σxx, σyy et σzz. On peut
déterminer σxx par :

σij · exj = tx (sur Sx=l)
→ σxx = −p

Pour déterminer σyy et σzz, il faut utiliser :
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uy(y) = 0
uz(z) = 0

Ceci implique que ϵyy = ∂uy

∂y
= 0 et que ϵzz = ∂uz

∂z
= 0.


ϵyy = 1

E
[σyy − ν (σxx + σzz)] = 0

ϵzz = 1
E

[σzz − ν (σxx + σyy)] = 0

→ σyy = σzz = −νp

1 − ν

Grâce à ça nous pouvons donc calculer la seule composante non nulle du tenseur des déformations :

ϵxx = 1
E

[σxx − ν (σyy + σzz)] = −p
1 − ν (1 + 2ν)

E (1 − ν)

3. Le module d’élasticité effectif est :

Eeff = σxx

ϵxx
= E

1 − ν

1 − ν (1 + 2ν)

Exercice 4 :

Une paroi rectangulaire a.2b, d’épaisseur unité, est soumise à un état plan de contrainte par les forces de
surface indiquées sur la figure ci-dessous ; seul q est connu et il n’y a pas de forces en volume. Dans les axes
(x, y) donnés, on propose comme solution à ce problème le tenseur contrainte

σx = A1x + B1y σy = A2x + B2y τxy = A3x + B3y

La matériau est élastique linéaire isotrope.

1. Trouver q1, q2 et q3 pour que les charges extérieures soient en équilibre.
2. Démontrer que l’état de contrainte proposé est la solution exacte du probléme, et trouver la valeur

des constantes A1, B1, A2, B2, A3, B3 pour qu’il en soit ainsi.

Correction
1. Équilibre des forces :

ΣRx = 0,
q1a

2 = q2a

2
→q1 = q2

ΣRy = 0, q32b = 2qa

→q3 = q
a

b

au centre de la paroi : ΣMz = 0,
1
2q1ab + 1

2q2ab = 2q3b
a

2
→q1 = q2 = q3 = q

a

b
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2. L’état de contrainte proposé est le suivant :

σ =
[

A1x + B1y A3x + B3y
A3x + B3y A2x + B2y

]

vérifions que cette état satisfasse l’équilibre et la compatibilité des contraintes avec les charges
extérieures sur chaque surface :

— Vérification de l’équilibre en l’absence de force volumique :

divσ =
[

A1 + B3
A3 + B2

]
= 0 (4)

— En utilisant l’équation σ n = t (conseillé)

(a) Sur la surface Sx=a avec n = [1 0]T

tx = σ1ini = σxx(x = a) = A1a + B1y = 0 = cste pour tout y

→ A1 = B1 = 0
ty = σ2ini = τxy(x = a) = A3a + B3y = q3 = cste pour tout y

→ B3 = 0

→ A3 = q3
a

= q
1
b

L’équation (4) (haut) A1 + B3 = 0 est bien vérifiée.

7



(b) Sur la surface Sy=b avec n = [0 1]T

tx = σ1ini = τxy(y = b) = q
1
b

x

τ(x = 0, y = b) = q

b
0 = 0

τ(x = a, y = b) = q
a

b
= q1 ok

ty = σ2ini = σyy(y = b) = A2x + B2b = −q = cste pour tout x

→ A2 = 0

→ B2 = −q
1
b

L’équation (4) (bas) A3 + B2 = 0 est bien vérifiée.
(c) Contrôle sur la surface Sy=−b avec n = [0 − 1]T

tx = σ1ini = −τxy(y = b) = −q
1
b

x

τ(x = 0, y = b) = q

b
0 = 0

τ(x = a, y = b) = −q
a

b
= −q2 ok

ty = σ2ini = −σxx(y = −b) = q
1
b

(−b) = −q ok

(d) Contrôle sur la surface Sx=0 avec n = [−1 0]T

tx = σ1ini = −σxx(x = 0) = 0 ok

ty = σ2ini = −τxy(x = 0) = q
1
a

0 = 0 ok
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