MECANIQUE DES MILIEUX CONTINUS BS - SGC - EPFL

Séance d’exercice n°9 Lausanne

Problémes de mécanique continue

Exercice 1 :

Imaginons qu’il soit possible - mis a part le probleme d’instabilité - de construire une colonne de section
constante aussi haute qu’on le désire. Si cette colonne est en granit, déterminer sa hauteur maximale.
Pour le granit :

Masse volumique p = 2700 kg/m?

Résistance ou contrainte de rupture en compression o,=18 kN/ cm?.

Correction Pour calculer la hauteur maximale de la colonne, il suffit de vérifier que la contrainte de
compression due au poids propre a la base de la colonne ne dépasse pas la limite en compression du granit.
Ainsi, on résout :

Pghmaz = 0¢

AN.:

180.106
e = — 2 67958
@ = 97812700 m

Exercice 2 :

Un céble en acier pour mine, long de 600 m, est formé de 3 troncons; chaque trongon mesure 200 m et a
une section constante. Ce cable doit supporter en service un poids Q = 30 kN et ’acier a une contrainte
admissible de 18 kN/ cm?, et une masse volumique de 7800 kg.m 3. Dimensionner ce cable (déterminer Ay,
Ag et A3); trouver ensuite son allongement total.

Correction 1) Le cable considéré doit étre capable de supporter la charge appliquée et le poids propre du
cable.

Il faut donc commencer le dimensionnement par le trongon inférieur ou la charge est appliquée et ou le poids
propre est moindre.

On appelle L la longueur d’un trongon.

Trongon Aj, inférieur :

Q
Oliny = L + =
lim P9 Al
AN.
A ~ 1.8 cm?
Troncon As, milieu :
Q + pgLAy
Ouim = pgL + L=
2
AN.
Ay ~ 2.0 cm?

Troncon As, supérieur :

Q + pgL(A1 + A3)

Olim = pgL +

A.N.
As ~ 2.2 cm?



2) Pour calculer I'allongement total, on peut par exemple calculer 1’allongement de chaque trongon.
Le tenseur des contraintes est donné par :

Ozzx
o= 0
0

o O O
o O O

D’apres la loi de Hooke, on a :

1 o
Exzx = ) [0z — V(Oyy +022)] = %

On peut donc calculer I'allongement par trongon.
Troncon Aq, inférieur :

L Lo'lzm L1 Q ! 1 L Q QL ng2
= dl = dl = — | = dl ) dl = —= — l)dl =—
wn = [ em@d= [ ra= | E<A1+/opg ) £, (o) E<Al+ 2

AN

ug1 >~ 0.17 m

Trongon As, milieu :
L e 1 Q A\ | pgL?
= dl = L=t d|dl==|L(-— L
UA2 /05A2 /0 <A2+9 +/pg> E( (A+p A>+ 5

ugo ~ 0.17 m

A.N.

Trongon As, supérieur :

L L1 (@ A1+ A1+A
= — J— = L
UA3 /OsAgdl /0 E<A3+ +/ dl)dl E/ ( A, —i—pgl)dl
_1 Q A+ As ng2
_E<L(A+ 9L )* 2
A.N.

uaz ~ 0.17 m

Au total,
Utot = UAL + UA2 + Uag >~ 0.50 m

Pour comparaison, si on avait considéré la contrainte constante dans tout le cable, on aurait trouvé :

Upot = f(mm ~ (0.525m

Exercice 3 :

Un prisme rectangulaire droit de longueur 1, hauteur h et largeur w est composé d’'un matériau linéaire
élastique, isotrope et homogene (voir figure [1)).
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FIGURE 1 — Géométrie du prisme pour les cas a) et b)

a) Le prisme est soumis a une pression uniforme sur les faces d’abscisse © = 0 et © = [. Toutes les autres
faces sont libres.
1. Exprimer le tableau des conditions aux limites.
2. Exprimer les composantes du tenseur des contraintes et des déformations infinitésimales.
3. En déduire le module d’élasticité effectif qui est défini par :

g
Eepp = — (1)

€xx
en fonction du module de Young E et du coefficient de Poisson v.
b) Le prisme est soumis, comme pour le cas a), & une pression uniforme sur les faces d’abscisse x = 0

et x = [. De plus, le prisme est en contact sans frottement avec des murs rigides d’ordonnée y = 0 et
y = h. Les autres faces (z = 0 et z = w) sont libres.

1. Exprimer le tableau des conditions aux limites.

2. Exprimer les composantes du tenseur des contraintes et des déformations infinitésimales (Indica-
tion : les conditions aux limites imposent ici que €,, = 0 en tout point).

3. En déduire le module d’élasticité effectif qui est défini par :

ag.
Eepp = =% (2)

€xx
en fonction du module de Young E et du coefficient de Poisson v.

c¢) Enfin, le prisme est soumis, comme pour le cas a), & une pression uniforme sur les faces d’abscisse
x = 0 et x = [. Cette fois, le prisme est en contact sans frottement avec des murs rigides dans les

deux autres directions (ordonnée y =0,y =h, 2 =0et z = w).

1. Exprimer le tableau des conditions aux limites.

2. Exprimer les composantes du tenseur des contraintes et des déformations infinitésimales.
3. En déduire le module d’élasticité effectif qui est défini par :

Eeff:%

€Exx

en fonction du module de Young F et du coefficient de Poisson v.



Solution

a) Le prisme est soumis a une pression uniforme sur les faces d’abscisse z = 0 et x = [.

1.

2.

3.

Le tableau des conditions aux limites :

Limite €z ey e,
Se—0 ty=p |ty=0]1,=0
Se—i ly=—p|ty=0]1,=0

Staty, | tz=0 | t,=0] 1, =0
Stat. | t2=0 |t,=0 ]t =0

La seule composante non nulle du tenseur des contraintes est o,.,.

— 055 =0 pour tous 4, j sauft =j =«
On peut déterminer o, par :

ey - Oij =g (sur Sp—;)

— Ogg = —P

Déterminer €, €,y et €., par la loi de Hooke :

g
€xx = E[(1+V)Uxx_yax$] = Ex = _%
v vp
Eyy = €22 = _Eo'mc = E

€y = €zz = €y, =0

Le module d’élasticité effectif est : o
Eejp=——=E
€Exx

Cette configuration permet donc d’évaluer le module d’Young d’un matériau expérimentalement.

b) Le prisme est soumis & une pression uniforme sur les faces d’abscisse © = 0 et © = [, et le déplacement
dans la direction y aux faces d’ordonnée y = 0 et y = h est nulle.

1.

2.

Le tableau des conditions aux limites :

Limite er €y e,
Si—o te=p | ty,=0|t,=0
Sa::l ty = —p ty =0 t, = 0
Slat, e =0 |uy,=0|¢t,=0
Stat.. tz =0 |ty =0 |t.=0
Les seuls composantes non nulles du tenseur des contraintes sont 0., et oy,. On peut déterminer
Oxz PAr :

ey - 0ij =1y (sur Sp—;)
— Ogg = —P

Pour déterminer o, il faut utiliser :
uy =0 (3)

ou
Ceci implique que €y, = a—y = 0. Par conséquent, nous utilisons la loi de Hooke pour déterminer
Yy
Oyy :

1
Cyy = E [(1+v) Oyy — V (Ouz + Uyy)] =0

— 5 [Oyy — VOzz] =0

— Oyy = V0Oag



En utilisant le résultat pour o,; nous trouvons :
— Oyy = —UD
Les autres composantes du tenseur des contraintes sont toutes nulles :

0., =0

Opy = Ogz = 0y, =0

Nous pouvons calculer €,, et €., analogue a la partie a).

1
€xz = = (14 v) 0 — v (022 + oyy)]
1 o 2
:E[sz—yayy]:%{l—u}
P2
- E<1 V)

1
€2z = E (I+v)ow — V(0w + Uyy)]

v v(l+v)
= _E (Um:r + Vgxx) = _Tamx
_vp(l+v)
B E

Les autres composantes du tenseur des déformations sont nulles :
€xy = €z = €y, =0

3. Le module d’élasticité effectif est :

Oz E
E = —_— =
/s €re 1 —12

Cette seconde configuration permet donc d’évaluer le coefficient de Poisson d’un matériau (une
fois le module d’Young connu).

c) Le prisme est soumis & une pression uniforme sur les faces d’abscisse + = 0 et z = [. De plus le
déplacement dans la direction y pour les faces y = 0 et y = h est nul, ainsi que dans la direction z
pour les faces z =0 et z = w.

1. Le tableau des conditions aux limites :

Limite ey €y e,
Se—o0 te=p | ty=0|t.=0
Se—i ly=—p| ty=0|t.=0

Staty, | tz=0 |u,=0] t,=0
Stat. | tn=0 | t,=0 | u, =0

2. Les seules composantes non nulles du tenseur des contraintes sont 0., oyy et ... On peut
déterminer o,, par :

Oij - €xj = s (sur Sy—;)

— Ogg = —P

Pour déterminer oy, et 0., il faut utiliser :



uy(y) =0
uy(z) =0
0
Ceci implique que €, = 8—y =0et que €,, = ;Z =0.
Y 2

1

Eyy:?

€2z = E (022 =V (0zz + 0yy)] =0

[Oyy — V (0ga +022)] =0

1—v

— Oy = 0, =
Grace a ¢a nous pouvons donc calculer la seule composante non nulle du tenseur des déformations :

1 1—-v(l+4+2v
€pp = z [z =V (Oyy +022)] = _pE'(](_—l/))

3. Le module d’élasticité effectif est :

5., Joe _ 1-v
T e 1—v(1+2v)

Exercice 4 :

Une paroi rectangulaire a.2b, d’épaisseur unité, est soumise & un état plan de contrainte par les forces de
surface indiquées sur la figure ci-dessous; seul ¢ est connu et il n’y a pas de forces en volume. Dans les axes
(z,y) donnés, on propose comme solution & ce probléme le tenseur contrainte

or = A1z + By Oy = Asx + Boy Toy = Asxr + Bsy
La matériau est élastique linéaire isotrope.

1. Trouver q1, g2 et g3 pour que les charges extérieures soient en équilibre.

2. Démontrer que 1’état de contrainte proposé est la solution exacte du probléme, et trouver la valeur
des constantes Ay, By, Aa, Bo, Az, B3 pour qu’il en soit ainsi.

Correction

1. Equilibre des forces :

qa _ q2a
YR, =0, —=—"
€T I 2 2
—q1 = q2
YRy =0, ¢2b=2qa
e o
q3 = qb
. 1 1 a
au centre de la paroi : XM, =0, §q1ab + §qQab = 2q3b§
a
—q1 =42 =43 =47

b



t_,, = cste

q
t, linéaire B g1
] Nt = cste
=
| X
T; a3 | b

ty = cste

2. L’état de contrainte proposé est le suivant :

_ | Awz+ By Asx+ Bsy
A3.73 + B3y AQ.?? + Bzy

vérifions que cette état satisfasse 1’équilibre et la compatibilité des contraintes avec les charges
extérieures sur chaque surface :

— Vérification de I’équilibre en I’absence de force volumique :

A1+ B3

Az + By =0 (4)

dive =

— En utilisant ’équation on = t (conseillé)

(a) Sur la surface S,—q avec n = [1 0]7

ty =01m; = Um(x = a) = Aja+ By =0 = cste pour tout y

—)AlzBlz()
ty = 09in; = Tuy(x = a) = Aza + B3y = g3 = cste  pour tout y
—)BgZO
1
—)Agzq—3:q—
a b

L’équation () (haut) A; + B3 = 0 est bien vérifiée.



(b) Sur la surface S, avec n = [0 1]7

1
ty = 01N = Toy(y =b) = ap
T(x =0,y = ):%OZ
a
Tz=ay=b)=q¢; =aq ok

ty = o9in; = Jyy(y =b) = Asx 4+ Bob = —q = cste  pour tout z

L’équation (bas) As 4+ By = 0 est bien vérifiée.
(c) Controle sur la surface Sy—_p avec n = [0 — 1]©

1
ty = 01 = —Tay(y = b) = —qy

Tz =0,y=0b)=20=0

b
S S
1
ty = 02y = —04(y = —b) = qg(—b) =—q ok
(d) Contréle sur la surface Sy—o avec n = [—1 0]
ty = 01ini = —0z(x =0) =0 ok

1
ty = o9y = —Tgy(z =0) = qao =0 ok



